
ISRAEL JOURNAL OF MATHEMATICS 99 (1997), 123-147 

INDUCING, SLOPES, AND CONJUGACY CLASSES 

BY 

ROZA GALEEVA 

Department of Mathematics, Northwestern University 

Evanston, IL 60~08-2730, USA 

e-mail: galeeva@doublon.unice.fr 

AND 

MARCO MARTENS 

Institute o] Mathematical Sciences, SUNY at Stony Brook 

Stony Brook, NY 11793-3651, USA 

e-mail: marco@math.sunysb.edu 

AND 

CHARLES TRESSER 

I.B.M., Po Box 218 

Yorktown Heights, NY 10598, USA 

e-mail: tresser@watson.ibm.com 

ABSTRACT 

We show that the conjugacy class of an eventually expanding continuous 

piecewise affine interval map is contained in a codimension 1 submanifold 

of parameter space. In particular conjugacy classes have empty interior. 

This is based on a study of the relation between induced Markov maps and 

ergodic theoretical behavior. 

1. Introduction 

One of the central questions in iteration theory is to decide whether two maps 

f :  X ~ X and g: Y ~ Y are topologically conjugate, i.e. whether there exists a 

homeomorphism h: X ~ Y such that  h o f = g o h. In this  paper  we deal with 

this question for eventually expanding piecewise affine maps on the interval. A 
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map is called piecewise affine if it is continuous, piecewise monotone, and affine 

on each of its finitely many intervals of monotonicity. 

The unimodal case was already studied by Misiurewicz and Visinescou (see 

[MiV] which also refers to former literature). They showed that the conjugacy 

classes form lines in the two parameter family of the eventually expanding uni- 

modal piecewise affine maps. In this paper we will show that the conjugacy class 

of an eventually expanding piecewise affine map is contained in a codimension 1 

submanifold of parameter space. 

The following trivial remark is the key to our study of the conjugacy classes 

of piecewise affine maps. Consider a set A, finite or denumerable, and assume 

that the interval I is, up to a set of measure zero, the pairwise disjoint union of 

intervals Ia, a E A. Then a map f: U Io -~ I, where f carries each Ia onto [ 

by an affine homeomorphism, is called a multiple covering map (with index 

set A): notice that the domain of such a map has full measure in its image (in 

short, has full measure).  The derivative of the branch .flls is denoted by D.f~. 

MULTIPLE COVERING MAP PRINCIPLE: Let f be a multiple-covering map with 

index set A. Then 
1 

~aeA[DAI = 1. 

In particular, for multiple covering maps f,  g which have the same index set A: 

{Va �9 A, IDf~l >_ [Dg~[} =~ {Va �9 A, ]Df~[ = [Dg~l}. 

For piecewise affine Markov maps, the above principle applies almost immedi- 

ately, yielding similar results. As we shall see, a much finer analysis is required 

to deal with more general piecewise affine maps. The first step of our study 

is to associate induced Markov maps (see Section 4) to piecewise affine maps. 

These induced maps have a topological definition and look like multiple covering 

maps. The only difference is that we don't know whether, for such a map, the 

domain of definition has full measure. So, before applying the multiple covering 

map principle to induced Markov maps, we have to study the measure of their 

domain of definition. 

A piecewise affine map has the Markov proper ty  if it has an induced Maxkov 

map whose domain of definition has full measure, i.e., it is a multiple covering 

maps (see Section 4). A closed set A C N is called an absorbing set of the 

interval map f:  N -* N if 

{x �9 NIw(x) c A} 
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has positive Lebesgue measure (where w(x) denotes the positive f-limit set of 

x E N). In [M] it was shown that S-unimodal maps have the Markov property 

if and only if the map does not have zero-dimensional absorbing sets. The main 

part of this paper is devoted to proving the same result for piecewise affine maps. 

In Section 4 we prove 

THEOREM A: A piecewise afline map has the Markov property if and only if it 

does not have zero-dimensional absorbing sets. 

There are three different properties which allow a map to have a zero- 

dimensional absorbing set. A map can have a periodic attractor. Secondly it can 

be infinitely renormalizable (see Section 2). In this case the topological structure 

causes an absorbing Cantor set. Furthermore a non-renormalizable map can have 

an absorbing Cantor set, which is caused by intrinsic geometrical properties. 

In [LM] and [L] it was shown that quadratic unimodal maps can only have an 

absorbing Cantor set if they are infinitely renormalizable. However, recently it 

has been shown in [BKNS] that there exist unimodal maps with highly degener- 

ate critical point having absorbing Cantor sets. These results depend on a fine 

control of the geometry. We will avoid such geometrical studies by an ergodic 

theoretical shortcut: we only study eventually expanding piecewise affine maps, 

and for such maps, one knows the existence of absolutely continuous invari- 

ant probability measures [LY]. Yet, these measures cannot coexist with zero- 

dimensional absorbing sets and we get 

THEOREM B: Eventually expanding piecewise aft/he maps have the Markov 

property. 

However the study of the intrinsic geometry is just postponed. To prove the fol- 

lowing conjecture one would probably have to go into geometrical 

considerations. 

CONJECTURE: A piecewise aff/ne interval map with no periodic attractor is 

eventually expanding. 

In Section 5 we will apply the multiple covering map principle to the Markov 

maps which are now, by Theorem B, multiple covering maps. A branch of a map 

is the restriction to an interval of monotonicity. Branches of a piecewise affine 

map which contain pieces of the non-wandering set in the interior of its domain are 

called essential branches. Let gd be the family of d-modal eventually expanding 
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piecewise affine maps. Cd is naturally parametrized by some submanlfold of 

R 2d+2 , to which we identify it. Studying the conjugacy problem in Ed we got the 

following result. 

Figure 1. 

THEOREM C: Every conjugacy class is contained in a codimension I submanifold 

of s Furthermore, if the slope of some essential branches o f f  E Ca are increased, 

the topological type changes. 

In the unimodal case we know that by moving up the critical value we will 

increase monotonically the kneading sequences and the entropy. In the multi- 

modal case we also expected to change the topological type by moving up a 

critical value. Now this is proved to be true in Theorem C. However, in the 

multimodal case monotonicity questions relating kneading information and the 

study of isentrops, the level sets of entropy, are much more delicate. For example, 

moving up the value of the left critical point of the map given in Figure I will not 

increase both kneading sequences. Moving up the left critical value will decrease 

the left kneading sequence and increase the right kneading sequence. It is very 

well possible that moving up does not give rise to an increase of entropy. 

Section 2 contains some basic topological lemmas, some of which are part of 

the folklore. To simplify the exposition of the proofs, we only considered maps 

on the interval: most of this paper, and in particular Theorems A, B and C, 

hold true as well for piecewise affine circle maps which have at least one periodic 

orbit. In Section 3 we define good intervals and describe their properties: they 

are the main ingredient in the definition of the Markov maps. 

The proof of the characterization of maps with the Markov property, presented 

in Section 4, can easily be generalized by using the tools from [M]. Thus Theorem 
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A also holds for smooth multimodal maps with negative Schwarzian derivative. 

More work would be needed to get a similar C ~ result. 

ACKNOWLEDGEMENT: We thank John Milnor for suggesting improvements to 

this text. He also raised the following 

QUESTION: Do isentrops of  eventually expanding piecewise affine maps  have 

e m p t y  interior? 

NOTATIONS. We will use the following conventions and notations. Intervals will 

always have positive length. Let N = [a, b] be an interval and A, U C N, where 

A is measurable and U open. Let f:  N --* N be a piecewise afline map. 

OU is the boundary of U, 

int(A) is the interior of A, 

mesh(U) is the length of the longest connected component of U, 

IAI is the Lebesgue measure of A, 

C l is the set of critical points of f ,  

orb(A) = {A, f(A), f2(A), . . .  } is the orbit of A, 

D f i  is the derivative of the i th branch. 

We shall also say that U C N satisfies the  0-condit ion i forb(OU)NU = 0. A 

branch of a piecewise monotone map is the restriction of the map to a maximal 

interval on which it is monotone. 

2. Non-renormalizable maps 

Let us begin with some definitions. 

The continuous map f:  N --* N is piecewise affine if there exist points 

a = ao < al < . . .  < aa < ad+l = b such that .fi = fl[a~,ai+l] is affine, and 

D f i D f i + l  < 0. The points al, a2, . . . ,  ad are called critical points.  We say 

the map is d-modal  when we want to stress the number of its critical points, 

mul t imoda l  when d > 1 and unimodal  when d = 1. 

Consider a piecewise affine map f:  N --* N. With I C N an interval and 

n >_ 1, the pair (I, n) is called a renormal izat ion of f if 

f '~(I)  C I and 7 # N, 

the interiors of . f i (I) ,  i = 0, . . . ,  n -  1 are pairwise disjoint. 

A map which has a renormalization is eaUed renormalizable.  The orbit 

U f i ( I )  is called a cycle (with per iod  n). A cycle is called minimal  if f'~[I 
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is non-renormalizable. A pair (I, n) is called a t r ap  of the piecewise affine map 

f: g ~ g if fn(I)  C I and I # N. 

The following two properties of non-renormalizable maps will be used over and 

over again. 

LEMMA 2.1: Let f: N --* N be non-renormalizable and piecewise afflne. Then 

(1) ON C orb(Cf), 

(2) f - l ( x )  \ ( O N  U Cf ) # 0 for every x ~ ON, 

(3) for every interval I C N 

U f'(I) = N. 
i>O 

Proof." The proof of (1) and (2) is easily supplied and we proceed with the proof 

of (3). 

Let I C N be an interval. Observe that f cannot have periodic attractors. In 

[MMS] it was proved that a piecewise affine map f without periodic attractor 

cannot contract intervals too much: infi>0 ]fi(I)l > 0. This implies that the 

connected components of Oi>0 f i ( I )  have a definite size. Hence the set can have 

only a finite number of connected components. These components are permuted 

by f .  In particular they are eventually periodic. This gives rise to a renormal- 

ization. Hence there is exactly one component which is dense in N. Clearly this 

invariant component contains C I. Hence it contains orb(C/) D ON, so it is N. 

| (Lemma 2.1) 

LEMMA 2.2: A non-renormalizable pieeewise a//ine map does not have traps. 

Proof." Let f:  N --* N be a non-renormalizable piecewise affine map. Observe 

that every non-renormalizable map has at least one expanding fixed point in 

int(N) " - e l ,  say f(p) = p and ]Df(p)[ > 1. 

Assume that there is some trap (I, n). By Lemma 2.1 p E I. 

Assume p �9 int(I) or p E OI is order preserving. Let 

Ek = {x �9 I I { x , f ( x ) , . . . , f ~ - l ( x )  c I and f~(x) ~ I}. 

Because there are no renormalizations f ( I )  ~ I. Hence E1 # ~}. Assume Ek # 0 

for some k _> 1. We set Fk = I ' . (E1 U E2 U . . .  U Ek). From the assumption 

on p, Fk contains an interval, hence by Lemma 2.1 f(Fk) ~ Fk. By definition 

f(Fk) C I, t h u s / - l ( E k )  n I = Ek+l # 0. 
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Now consider En: E ,  • 0 and fn(E,~) N I = 0. But I is a trap, so f'~(E,~) C 

fn ( I )  c I, a contradiction. 

Assume p E OI is an order reversing fixed point. Then p @ in t ( f i ( I ) )  for i >_ 0. 

Now I u f ( I )  is also a trap but containing p in its interior and we axe back to 

the previous case, which implies I U f ( I )  D int(N). But now, I and f ( I )  are the 

components of N - {p} and f interchanges these two components. We found a 

renormalization, a contradiction. | (Lemma 2.2) 

LEMMA 2.3: The periodic points of a non-renormalizable piecewise affine map 

f :  N ~ N axe dense. 

Proof: Fix an open interval I C N with 7 N ON = 0. The aim is to show that 

there exists k _> 1 such that f k ( I )  D I: I contains a periodic point. 

Because the orbit of I is dense there exists a q >_ 1 such that  fq(I)  • I ~t 0. 

Let Ij = f fq(I) ,  j >_ O. Assume that I C Ij never happens. 

Consider Tk = Uj<k Ij, k > O. Because I0 n I1 ~t 0 every Tk is an interval. 

Clearly fq(Tk) C Tk+l and Tk C Tk+l. Let I = (a, b) and suppose a ~ 11. 

CLAIM: a ~ Tk for k >_ O. 

Proof of Claim: For k = 0,1 the claim is true. Assume by contradiction that 

there exists a first k > 1 such that a E Tk+l. Because f is non-renormalizable, by 

Lemma 2.2 we get that Tl -T l -1  = Jl • 0 for I _< k. Observe that  Jl c It, hence Jl 

is an interval, otherwise a e Tl. Now there exists x E Jk - t  with fq(x)  = bk where 

bk is the right boundary point of Tk. Let D -- Ix, bk-1]. Then D C Jk-1 C Ik-1. 

We have a E fq( Jk) and fq(x) = bk, hence Tk C fq (DU Jk). Now Io ~- fq(  Jk) 

by assumption, hence 

D U Jk C T~ \ Io C fq(D).  

This yields 

hence 

Tk C fq(Jk U D) C f2q(D), 

/o c f :q(Ik-1)  = Ik+l, 

a contradiction. | (Claim) 

To finish the proof of Lemma 2.3, let T = UTk. Now fq(T)  C T and the 

closure of T is not the whole N because T lies on one side of I and I does not 
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touch the boundary of N. We found a trap, a contradiction. Hence for some 

j _> 1 we have I C Ij .  I (Lemma 2.3) 

Remember that an interval satisfies the S-condition if orb(0U) n U = 0. 

COROLLARY 2.4: The critical set of a non-renormalizable piecewise a[fine map 

has a neighborhood U satisfying the S-condition and having arbitrarily small 

mesh. 

LEMMA 2.5: Let c E CI be a critical point of the non-renormalizable piecewise 

a/~ne map f: N --, N.  Then in every component M C N \ ( O N U C I )  there exists 

an open interval I C M and n >_ 1 such t h a t / n i l  is monotone and c E ]'~(I). 

Proof: Fix c E C I. Let d 6 C/. If c E orb(d) then na _> 0 will stand for the first 

time that d hits c. Now take L > max{nd[na < oc}. 

Using Lemma 2.1 (2) we can choose a sequence Co = c, c - t , c -2  . . . .  such that 

f (c- ( i+l ) )  = c- i  and c-i  r C!  U ON. Then consider C-L. By Lemma 2.1 (3) 

there is some n _> 1 with C-L E fn (M) .  In particular there exists an interval 

J1 C M such that fn iJ l  is monotone and C-L E .f'~(J1). Choose J1 to be 

maximal, which means that .fnIJ1 is a branch, i.e., by Lemma 2.1 (1) we know 

that  Of~(Jl)  C orb(C/).  

Assume that c-L E 0f" (J1) :  then there would be some critical point d E C S 

and some i _> 1 such that f i (d)  = C-L. Take the pair (d,i) with i minimal. Then 

n d =  L + i > L, contradicting the definition of L. Hence C-L E int(Sn(J1)). 

To finish the proof, consider the orbit of C-L. It does not pass trough critical 

points. Hence there is some open interval ,12 9 C-L with fL[J2 monotone and 

c E fL(J2).  And we can take I = f- '~(J~) n Jx. I (Lemma 2.5) 

LEMMA 2.6: Let f :  N --* N be a non-renormalizable piecewise a/fine map. Then 

for every interval I there exist an interval J C I and n >_ 1 such that f " i J  is 

monotone and fn(  j )  is a connected component of N \ C I. 

Proo~ Consider the interval I C N. 

CLAIM: There exists n _> 0 such that f " ( I )  contains a component of N \ CS. 

Proof of Claim: Because f does not have wandering intervals and periodic 

attractors, there exist infinitely tnany n >_ 0 with f " ( I )  n C I r 0. In particular 

there exist a critical point c E C I and non-negative numbers n, q such that 

fn(I)  ~ c and fn+q(I) ~ c. Now consider the interval T = Uj>_ofJq(fn+l(f-)). 
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If either f n ( I )  or fn+q(I) contains two consecutive critical points, we are done. 

Otherwise, because f does not have traps, 1"+1(1) c p(f"+'(1)) which implies 

YJq(fn+l(I)) = U fiq(fn+l(I))" 
i<j 

But fq(T)  C T and, since f does not have traps, we get T = N. By Lemma 

2.1 (3) we have in fact T = N. Hence there exists jo >_ 1 such that  fJ~ = 

U <_j Pq( l "+ ' ( I ) )  = N. m (Claim) 

We are going to prove that I contains an interval which is mapped after some 

time monotonically onto a component of N ". C I. Assume fJ (I) does not cover a 

component of N ". CI for j < n but f'~(I) does contain a component. For every 

k < n there exist Jk C I such that 

f k lJk  is monotone, 
P(Jk)  = p ( I ) .  

To prove this let J0 = I and assume that Jk is defined for some k < n. If 

f l f k ( I )  is monotone then let Jk+l = gk. If f l f k ( I )  is not monotone then there 

exists a unique critical point c E CI with c E f~(Jk) = fk ( l ) .  Let L, R C dk 

be the intervals which are mapped onto the two components of fk(dk) \{c}.  We 

may assume that fk+l(L)  C fk+l(R).  Now fk+' ( I )  = fk+l(R)  and fk+l lR is 

monotone. So let Jk+~ = R. 

To finish the proof of Lemma 2.6, we just choose J = J , .  | (Lemma 2.6) 

A piecewise affine map f is called even tua l ly  e x p a n d i n g  if there is an integer 

n > 1 so that IDI'~I > 1 whenever this derivative is defined. 

LEMMA 2.7: Every eventually expanding piecewise affine map is non- 

renormalizable or has [initely many minima/cycles. 

Proof'. Every cycle (I, n) consists of pairwise disjoint intervals. This implies that 

the number of critical points of renormalizations is uniformly bounded. Hence 

there is always a branch of f'~lI, say fn:  J ---* I monotone and J c I whose size 

is a definite fraction of I. But IDfml ~ oc so that fn  could not map this piece 

into I for n big. We conclude that the period of the renormalizations is bounded 

for eventually expanding maps. Since each cycle contains at least one critical 

point we conclude that  there are only finitely many minimal cycles. 

To find a minimal cycle take a renormalization with maximal period; 

(I, n). Then there will be a smallest interval J C I such that (J, n) is still a 

renormalization. The orbit of J is a minimal cycle. | (Lemma 2.7) 
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Remarks: (1) The interiors of minimal cycles are palrwise disjoint, 

(2) Almost every point enters after some time a minimal cycle. In particular, 

every minimal cycle equals the conservative part of some ergodic component. 

(3) All statements 2.1-2.7 remain true if piecewise affine is replaced by 

"continuous and with no homterval". 

3. G o o d  intervals  

Fix a non-renormalizable piecewise affine map f :  N --* N. An open set U D C! 

is called a nice n e i g h b o r h o o d  of C/  if it satisfies the 0-condition and every 

connected component contains exactly one critical point. We set U = Ucec~ Uc- 

Corollary 2.4 states that there are nice neighborhoods U with mesh(U) arbitrarily 

small. 

Definition 3.1: Let U~ C U C N be a component of the nice neighborhood U 

of C:. An interval T C N is called a good  in terval  (of t i m e  n >_ 0) for U~ if 

fn: T ~ Uc is monotone and onto. 

Because every component of a nice neighborhood of C: contains a critical 

point, every good interval has a well defined time needed for reaching the nice 

neighborhood. The 0-condition implies easily that two intersecting good intervals 

T1 and T2 corresponding to the same nice neighborhood are nested: if T1 nT2 r 

then either T1 C T2 or T2 C T1. The following Lemma states that the collection 

of good intervals is big. 

LEMMA 3.2: Let U C N be a nice neighborhood of C: with mesh(U) small 

enough. For every critical point c E C: there exists, in every interval I C N, a 

good interval T C I for Ur whose time is at least 1. 

Proof." Fix c C C:. Lemma 2.5 says that in every component M of N \ Cy there 

exists an open interval IM(C) C M and nM(c) _> 1 such that c E fnM(r 

and fnM(~)li M (c) is monotone. Choose such an interval in every component M 

of N \ C : .  Let Vr = AfnM(~)(IM(c)). By Lemma 2.6 we will find, in every 

interval I C N, an interval J C I and n > 1 such that fn:  J ~ V~ is monotone 

and onto. Now Lemma 3.2 holds if we take U small enough such that  U C N V~. 

I (Lemma 3.2) 

Observe that  we can describe topologically how small U has to be to apply 

Lemma 3.2. In Section 5 we will discuss conjugacy classes. For this we prefer to 

deal with topologically defined objects. 
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To avoid the annoying fact that  the branches can be restricted by the boundary 

points of N, we assume that the map f is part of an ex tens ion ,  i.e. there is a 

piecewise affine map g: [-1,  1] --+ [-1,  1] such that 

g c  [-1,  1], 

gin = f ,  
a({-1,1}) c {-1,1},  
every point in ( -1 ,  1) enters N after some time. 

The next Lemma explains why nice neighborhoods are nice. 

LEMMA 3.3: Let U D C l be a nice neighborhood. If  f i(x) ~ U for i < n but 

fn  (x) E Uc C U, there exists a good interval T ~ x of time n for Uc. 

Proof." Let U = Ucecs uc be a nice neighborhood of C S. Take x E N such that  

f i(x) ~ U for i = 0 , . . . , n  - 1 and fn(x) E Uc. Suppose by contradiction that 

f~(T) does not cover Ur where T 9 x is the maximal interval on which fn  is 

monotone. We assumed f to be part of an extension. Hence the monotonicity is 

restricted by some critical point: there exist i < n - 1 and a critical point d E C S 

such that d E Bfi(T) and f~-i((d, f~(x)) C Uc. By definition of n we know that 

f i(x) r Hence (d, fi(x)) fq BUd ~ O which implies that orb(BUd) N U 5~ O, 

a contradiction. I (Lemma 3.3) 

LEMMA 3.4: Let U be a nice neighborhood for C S. There exists a dosed set Au 

with Lebesgue measure zero such that every component of the complement of 

Au U U is a good interval for U whose time is at least 1. 

Proo~ Let U -- Ucecs u~ be a nice neighborhood of C S and Au = 

{x C N] orb(x) N U = ~)}. Choose a component S of the complement of Au and 

x E S. Assume that the orbit of x enters U for the first time in n steps, say 

fn(x) E Uc. This means that there exists a good interval T ~ x of time n. 

Observe that  all Ur are good intervals for U. Furthermore because of the 0- 

condition we know that good intervals are nested: f~(T) M U = 0 for i < n. 

Because fn(BT) = OUc the B-condition implies that orb(BT) ~ U = 0: BT C Au 

and T = S. Hence every component of the complement of Au is a good interval. 

In particular, every connected component of the complement of Au U U is a good 

interval of time at least 1. 

The orbits of points in Au stay outside the neighborhood U of the critical 

points. The fact that the Lebesgue measure of such sets is zero is shown in [Mi] 

and [M]. | (Lemma 3.4) 
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Lemma 3.4 should not be confused with Theorem A. This Lemma states that  

outside the neighborhood U the space is filled, measure theoretically, with good 

intervals. It says nothing about the good intervals in U. Lemma 3.2, however, 

states that U is filled densely with good intervals of time at least 1. The content 

of Theorem A is that U is also filled measure theoretically with good intervals 

if and only if the dynamical system does not have a zero-dimensional absorbing 

set. 

COROLLARY 3.5: Let On, n = 1 ,2 , . . .  be nice neighborhoods of C(f)  with 

mesh(U,~) ~ 0. If X is a forward invariant set with positive Lebesgue measure, 

then for every n _> 1 there exists a component Cn of Un such that 

J i m  [X N Cnl - -  1. 

Proof Take a density point z E X. We may assume that z @ Au. for all 

n _> 1 (Au, is the set of measure zero obtained by applying Lemma 3.4 to the 

neighborhood Un). Then we can find a good interval Tn for the component Cn 

of U~ with x E Tn. Say fk ,:  Tn ~ C,~. Observe that [T~I --, 0. 

Then 
lira Ix~  < lim Ifk"(XCnT")l 

. - . o~  IC.I - . - o o  l y ~ . ( T . ) l  

= lim ] X C n T " [ - 0 .  
. - o o  IT.I 

This finishes the proof. $ (Corollary 3.5) 

An ergodic  c o m p o n e n t  of f is a forward and backward invariant set with 

minimal positive Lebesgue measure. Corollary 3.5 shows that there are at most 

as much ergodic components of f as there are critical points. 

Given a neighborhood of a critical point it will in general not satisfy the nice 

property of Lemma 3.3. The next Lemma shows how we can deal with this 

problem. 

LEMMA 3.6: Let V C int(N) be an intervad containing one critical point c E C! 

and satisfying the O-condition. Let K = {x E Cll orb(z)O V ~ 0}. Then there 

exists a neighborhood U = Ude K Ua of K with the following properties. 

(1) Uc = V and every component Ua of U contains only one critical point 

d E C S. Furthermore U satisfies the O-condition, 

(2) there is a function l: (0, 1) --* R with l(y) ---, 0 if y --* 0 such that mesh(U) < 

l ( IVI) ,  



Vol. 99, 1 9 9 7  INDUCING, SLOPES, AND CONJUGACY CLASSES 135 

(3) the set K is partitioned, say K = Uj<s Kj  so that 

Ko = {c} ,  

for every d E Kj ,  j > O, there exist an interval Td ~ f (d) ,  n >_ 0 and 

some i < j such that e E Ki such that fn: Td --+ Ur is monotone and 

onto and Ud is the connected component of f - 1  (T) containing d, 

(4) i f  i f ( x )  ~ U for i < n but f n (x )  E Ud C U, there exists an interval T ~ x 

such that f~: T -* Ud is monotone and onto. 

Proof'. We construct U by induction. Assume we defined the objects: 

(i) disjoint sets Ko = {c}, KI, K2,..., Ks c K C C I, 
l 

(ii) neighborhoods Wo = V C WI C ... c Ws of the form Wt = Ui=o UdeKi Ud 

where Ud is the connected component of Wt containing d. In particular Wo = 

Uc = V and Wl D Uti=o Ki, 

(iii) numbers tl, t2,..., tt such that: 

every point d E K{, i > 0, enters for the first time Wi-1 after ti steps, say 

ft~ (d) E Ue with e E Kj, j < i, 

there exists an interval T ~ v = f(d) such that ff~-i maps T monotonically 

onto Ue and Ua is the connected component of f - l ( T )  containing d, 

(iv) Wi, i _< s satisfies the 0-condition. 

Assume that Ut_<s Kt ~ K. We are going to define K~+I, Ws+l and ts+l 

according to the above properties. Take x E K \ Ui<s Ki and let ts+l(X) be the 

first moment that the orbit of x enters Ws. This happens because x E K and 

V c Ws. Now let 

t ,+l  = min{t,+l(X)} and Ks+l = (x E K -  U K'its+l(X) = t,+l}. 

To finish the construction we have to find the intervals Ud = f - l (Td)  for the 

po in t sd  E K~+I. Choosed  E //8+1, say ff,+l(d) E U~ w i t h e  E Kj,  j _< s. 

Consider the maximal interval M ~ v = f(d) on which ff ,+l-1 is monotone 

and assume that  the monotone image does not cover U~. Because we assumed 

that f is part of an extension, the monotonicity is restricted by some critical 

point and not by a boundary point. There exist a critical point e ~ E C I and a 

number k < t ,+l  - 1 such that e' E Ofk(M)  and f t '+ l - l - k ( (e ' ,  f k (v ) ) )  is strictly 

contained in U~: Observe that  every point in Ws eventually enters V. So orb(e') 

intersects V: e' E K.  Because f t ,+~-l-k(e ' )  E U~ and ts+l - 1 - k < t8+1 we 

get e' E K o U K 1 u . . . U K s .  Hencee '  E U~, C Ws. Becausek < t ~ + l - 1  we 
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have fk(v) q~ De,: OUr, M (e',.fk(v)) # 0. This implies that orb(0Ue,) n Ud # 0. 
This cannot be because Ws satisfies the 0-condition. This contradiction implies 

fts+l-l(M) DUe. Now we can take the interval Td 9 v which is mapped by 

fts+l-1 monotonically onto De, and we let U4 be the connected component of 

f-l(Td) which contains d. This finishes the definition of Ws+l. 

To finish the induction step we have to check that W8+1 satisfies the 

0-condition. To do so, take y E OW~+I and assume by contradiction that  for 
__ I l a + l  K -  some n > 0 we have f~(y) E W8+1, say fn(y)  E U, with e E ~j=o j. Because 

every point in W~+I enters after some time Ws, we know that  y E OUd with 

d E K,+I .  Because ft,+l (y) e OWs and Ws satisfies the 0-condition, we have 

n < t~+l. Hence fn(d) ~ De. So OU~ M fn(Ud) # 0 and orb(0U~) intersects l ~ ,  

a contradiction. 

This procedure will stop after finitely many steps: Uj<,  Kj = K.  Let U = 

W~. Clearly U satisfies the 0-condition. The Contraction Principle from [MMS] 

implies that mesh(U) goes to zero if IV[ goes to zero. 

It remains to prove property (4). Take x E N and suppose that x enters U 

for the first time in n _> 0 steps, say fn(x) E Ud. Let M 9 x be the maximal 

interval on which fn  is monotone and suppose that f'~(M) does not cover Ud. 
Because we assumed f to be part of an extension, the monotonicity is restricted 

by a critical point: there exist e E Cf and i < n such that e E Ofi(M) and 

fn-i((e, fi(x)) is strictly contained in Ud. First observe that this implies e E K. 

So fi(x) q~ Ue which implies that OU~ N (e, fi(x)) # O. Hence orb(0U~) M U # O. 

This is impossible because U satisfies the 0-condition. I (Lemma 3.6) 

4. T h e  Markov property  

As we will see in this section, every nice neighborhood of the critical points of 

a piecewise affine map defines an induced map. This induced map is strongly 

related to the ergodic theoretical behavior of the map. In particular the existence 

of absorbing Cantor sets is related to these induced maps. We will start to define 

these induced maps for the non-renormalizable piecewise affine map f :  N ~ N. 

Fix a nice neighborhood U C N of C S with mesh(U) small enough to apply 

Lemma 3.2. Let D C N be the union of all good intervals for U whose time is 

at least 1. From Lemma 3.2 we know that D is dense in N, and because good 

intervals are disjoint or nested, we get that every connected component of D is 

a good interval of time at least 1. This allows us to define the Markov map 
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M: D ~ U (def ined  by  U) in the following way: for every connected component 

T C D of D, with time n, set 

M[T = fnlT. 

Observe that  Markov maps are defined topologically. 

Det~nition 4.1: A piecewise affine map f :  N --, N has the M a r k o v  p r o p e r t y  

if there exists a nice neighborhood U C N of the critical points such that its 

Markov map M: D ---} U is defined almost everywhere, i.e., 

IN - Ol = 0. 

The points in the set/3o = N - D are called b ad  points .  

A closed set A C N is called an a b s o r b i n g  set  if 

I{z ~ glw(x)  c A}I > 0, 

where w(x) denotes the w-limit set of x G N. 

THEOREM A: A non-renormalizable piecewise afline map has the Markov 

property if and only if it does not have zero-dimensional absorbing sets. 

The next two lemmas are needed as preparation for the proof of Theorem A. 

The first one gives a description of the limit behavior of bad points. The second 

one is technical but will be used to prove the ergodicity of non-renormalizable 

maps. It also enables us to define special Markov maps whose image is just one 

interval. These Markov maps play a crucial role in the description of conjugacy 

classes in Section 5. 

To describe the limit behavior of bad points, we need some preparation. Fix a 

nice neighborhood U C N of C! and consider the Markov map M: D --- U. Let 

B0 = N - D be the closed zero-dimensional set of bad points. In general this 

set will not be invariant. The main step in the proof of Theorem A is to find an 

"almost invariant" se t /~  D Bo. 

We start  to define the d e p t h  d(T) of a good interval T as the number of good 

intervals which contain strictly T. Clearly every component of D has depth equal 

to zero. If the critical value f(c)  is contained in a good interval of depth d, denote 

this interval by Td(c). A critical point which has infinitely many Td's is said to 

be of inf in i te  t ype .  Otherwise, it is of f in i te  t y p e .  
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We also need to define the pull back of bad points along the orbit of a good 

interval. Let T C N be a good interval, say fn: T --* Uc. Define the tubes  

Pr = 6 f- (S0 n Vc) n I--fiT). 
i=O 

Now the ex tended  set of bad points is defined to be 

/Y= UBn, 
n>0 

where 

B"=B~ U PT~(~). 
d=0 cGC f 

Clearly every Bn is a closed zero-dimensional set. 

LEMMA 4.2: The extended set of bad points contains Bo 

f(/} - CI) c / } .  For almost every x �9 Bo, there exists n >_ 0 with 

and satisfies 

orb(x) C Bn. 

Proot~ Assume that f is part of an extension. First we will show the near 

invariance property of/~. Because the tubes PT are invariant, it suffices to show 

that f (Bo  - CS) C/~. Let x e Bo - C I. If ](x) ~ 13o, there exist c �9 C! and 

d >_ 1 with ](x) �9 Td(c). Because x ~ c, we can take d maximal with these 

properties. Now f(x) ~ /~ implies I(x) ~ PTd(c). So there exists some good 

interval T C Td(c) with ](x) �9 T, and because d was taken to be maximal, 

we have ](c) ~ T. Then ] - I ( T )  contains a good interval around x �9 B0, a 

contradiction. 

To prove the second statement take some x �9 B0. We may assume that x is 

not a preimage of any critical point. Now assume that orb(x) q~ B~ for all n >_ 1. 

We are going to show that x is not a density point of B0. 

Given n _> 1 the orbit of x leaves B~ after some steps. There is only one way 

to leave Bn. The point reurns to some U~, c �9 Cf, and falls into some Vu(c) with 

d > _ n + l .  

There are two observations to be made: 

]Vd(c)l --* 0 if d ~ c~, 

Vd(c) satisfies the 0-condition. 
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The first observation is clear. Assume that Vd(c) does not satisfy the 

0-condition. Then there is a monotone image of Td(c) intersecting Vd(c). This 

image can not be contained in Va(c) otherwise there would be a trap. Hence this 

image intersects the boundary of Vd(c). This would imply that some monotone 

image of Td(c) and Ta(c) intersect but the two good intervals are not nested. 

Contradiction. 

This means that we can apply Lemma 3.6 and get nice extensions Wd(c) of 

Vd(c) with mesh(Wd(c)) --* 0 if d --* co. 

It only remains to show that for some ~ > 0, 

IDnWl 
IWl >- ~ 

for every component W C Wa(c) and every c E CI and d > 1: we can push 

back this definite amount of good intervals into a very small neighborhood of x 

by using Lemma 3.6 again, showing that x is not a density point of B0. Density 

points could not go too deep in/~, and the Lemma will be proved. 

Let K C K C I be two open intervals. The set A = I - K  is called a 

b o u n d a r y  piece if [{T C A[T is a good interval }[ = [A[. The first step is to 

show that  every Uc has a boundary piece. Fix c E C! and consider the sequence 

of intervals Q1 = f(Uc), Q2 . . . .  with the following inductive definition: If Qi c T 

where T is a good interval for Ua, then Qi+l = f(Ud). Otherwise the sequence 

stops. If this sequence is longer than the number of critical points, then at least 

one critical point is visited at least twice, and there is a trap. Hence this sequence 

is finite. Say Q~ = f(Ud) is not subset of Tx(d). Now apply Lemma 3.4 and we 

see that Ud has a boundary piece. Considering the sequence Q, . . . . .  Q2, Q1, we 

can pull back parts of this piece and we will find a boundary piece in Uc. 

The second step is to make definite boundary pieces in the V,~(d). This is easy 

because we can pull back one of the above boundary pieces into Tn (c), giving rise 

to definite boundary pieces in Tn (d). One step more and we will find the definite 

boundary pieces in Vn (c). 
Lemma 3.6 describes how the different components of Wn(d) are related: they 

form a tree. Using this description we can pull back the definite boundary pieces 

in Vn(c) into definite boundary pieces of the components of Wn(c). 
Observe that  the only non-bounded part of the construction takes place 

during the transport of the boundary pieces in Uc to the Tn(d). This trans- 

port is affine so that the proportion of space occupied by boundary pieces is 
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preserved, as well as the fact that  these boundary pieces are filled by good inter- 

vals. I (Lemma 4.2) 

LEMMA 4.3: Let U = Ucecs Uc ~ c S be a nice neighborhood with mesh(U) 

small enough. The set D ~  consists of all points x E N which are contained in 

infinitely may good intervals: 

x c T3(x) c T2(x) c Tl(x) 

with ft,(x): Ti(x) --* Vc~(x) and ti(x) --* cr 

For every critical point c E C I and for almost all x E Doo there are infinitely 

T (x) with/t,(x): Ti(x) --* Go. 

In particular, K B C Uc with IBoAUc - B[ = 0 and [B I > O, then almost every 

x E Dor hits B after some time. 

Proof'. Fix c E C S. Lemma 3.2 implies that  every Ud contains a good interval 

for Uc. Let B C U be the union of those good intervals and 

XB = {x e Doff orb(x) N B = 0}. 

Take x E Doo and consider the sequence x E -..  C T2(x) C Tl(x) of good 

intervals with times ti(x) ~ oc. Let Bi = Ti N f - t ' ( B ) .  Clearly Bi M XB = 0. 

Because f t ,  ]Ti is affine we get 

]B~] _ IBM Uc,(x)[ > min IBM U~] > e > 0 
]Ti] [U~,(x)] - c e c s  [Uc I - 

for all i k 1. Because there are no wandering intervals and no periodic attractors 

we have [Ti(x)] --* 0. Hence x is not a density point of XB and IXBI = 0. Now 

Do~ is covered up to a set of measure zero by good intervals for Ur From this we 

get directly that  almost every point in Doo is contained in infinitely many good 

intervals for Uc. 

Take a set B C Uc with ]B[ > 0 and [ B o M U c - B [  = 0. Let XB -- 

{x e D~o[ orb(x) n B = 0}. As above we can show that  [XB[ = O. 

I (Lemma 4.3) 

Instead of proving Theorem A, we will prove the following stronger proposition 

describing more precisely the ergodic theoretical behavior. A map f :  N -* N is 

called e r g o d i c  if it does not have two disjoint ergodic components. It is called 

c o n s e r v a t i v e  if almost every point hits after some time an arbitrarily given set 

X C N with positive Lebesgue measure. 
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PROPOSITION 4.4: Let f be a non-renormalizable piecewise affine map. 

I f  f has the Markov property, f is ergodic and conservative. In particular, the 

orbit of almost every point is dense in N.  

I f  f has a Markov map M: D ~ U with IN - D[ > O, then there exists s >_ 0 

such that for almost all x E N 

orb(S"" (z)) c B, 

for nx >_ 0 big enough. In particular 

IN - {~ ~ Nl~(x)  c B,}I = o, 

so that Bs is a zero-dimensional absorbing set, absorbing in fact almost every 

orbit. 

Proof'. Let f be a piecewise alline map having the Markov property. The Markov 

property implies that  IN - D~[  = 0. Now let X C N be an invariant set of 

positive Lebesgue measure. Take c E C / a n d  a density point x C X n Doo of X.  

Now consider only the intervals Ti(x) from Lemma 4.3 which are good for Uc and 
xnlz_q_~ _- 1. observe that  IXnT'[ ~ 1. Because X is invariant we conclude that  lUcl IT, I 

Conclusion: we cannot have two disjoint invariant sets of positive measure: the 

map f is ergodic. 

To prove the conservativity of S, take a set A C N with positive Lebesgue 

measure. From Proposition 2.1 we know that  there is some J C Uc with positive 

Lebesgue measure and some number n _> 0 such that  f n ( j )  C A. Now apply 

Lemma 4.3 to B = J .  Almost every point enters J after some time, hence also 

enters A a little bit later. 

Consider next a piecewise affine map ] which does not have the Markov 

property. Then there exists a Markov map M: D --+ U with [B0[ > 0. From 

Lemma 3.4 we get [B0 - U[ = 0. Hence there exists a c E C I with [U~ n B0] > 0. 

As a direct consequence of Lemma 4.3, we get [Dor = 0: almost every point 

hits B0 after some time. The limit behavior of orbits is guided by the behavior 

of points in B0. This behavior is described by Lemma 4.2, giving rise to the 

following candidates for the ergodic components: 

E~ = U :<E'), 
i6Z 
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where 

E~ = {x �9 B0[ orb(x) C Bn and orb(x) r B~-I}.  

These sets En are pairwise disjoint, forward and backward invariant sets. 

Furthermore, by Lemma 4.2, we get [Un>0 E~[ = [B0[, and as a consequence 

of Lemma 4.3, [N-[-J~>l En[ = 0. Now Corollary 3.5 implies that there are only 

finitely many En with IEn[ > 0. Hence for some s _> 0 

IN -  U E,4 = o. 
n < s  

This means that the limit behavior takes place in B~: 

I N  - {x �9 Nl (x) c B:}I = o, 

so that  Bs is a zero-dimensional set absorbing almost all points in N. 

| (Proposition 4.4) 

Remark: Proposition 4.4 implies that if a map has the Markov property, then 

all its Markov maps are defined almost everywhere. 

THEOREM B: An eventually expanding non-renormalizable piecewise aft/He map 

has the Markov property. 

Proof In [LY] it was proved that an eventually expanding piecewise affine map 

has an absolutely continuous invariant probability measure, and that  further- 

more, the density of this measure has bounded variation. 

Now assume that there is an eventually expanding non-renormalizable piece- 

wise affine map not having the Markov property. Given a Markov map M: D -* 

U, there is some s >_ 0 such that  the orbit of almost every point enters the closed 

set B~ after some time. Hence every ergodic component of the invariant proba- 

bility measure is supported on Bs. In fact the whole measure is supported on B~. 

Now B~ is zero dimensional and closed, and such sets cannot support a non-zero 

density of bounded variation. This yields a contradiction. | (Theorem B) 

5. Conjugacy classes 

In this section we are going to consider families of piecewise affine maps and show 

that  every conjugacy class is contained in a submanifold of codimension 1 in the 

space of such maps. 
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Let ~'d be the family of d-modal piecewise affine maps. The subfamily of 

eventually expanding piecewise affine maps is denoted by Sa C fd- We consider 

Cd as a submanifold of R 2d+2. We study the conjugacy question inside the class 

s The conjugacy class of a map f �9 Sd is denoted by [f] c Ed. 

To describe the conjugacy classes we need the notion of essential branches 

and slopes. The i th branch is called essent ia l  if a minimal cycle intersects the 

interior of its domain. The slope Dr(i)  is then also called essential .  Let B I be 

the collection of the essential branches. Observe that Bf  is defined topologically. 

In general one can change non-essential slopes of a map without changing its 

topological type: examples are easily provided. 

THEOREM C: The conjugacy class [f] C s is contained in a codimension 1 

submanifold Of gd. In particular, if  g �9 [f] and its essential slopes are at  least as 

big as the corresponding essential slopes of f then they are in fact equal, i.e., 

{IDg(i)l > IDf(i)l, i �9 BS} ~ {Dr(i) = Dg(i) for i ~ B f ) .  

The proof of this Theorem is based on the Multiple Covering Map principle. 

We will not work in s but in the space of inverses of slopes. To go back to s 

we use the submersion 

7r: s --~ Dd = (0, oc) d+x 

defined by ~r(f)(i) = ([Df(i)[) -1. 

The basic step in proving Theorem C is the definition of an induced map. This 

will allow us to define topologically a multiple covering map for every ] �9 s 

Choose a map f �9 Cd and consider the minimal cycle corresponding to a non- 

renormalizable renormalization (N, n). Let B c B f be the collection of essential 

branches which are used by the cycle U f i ( N )  and let D = (0, oc) B. The natural 

projection from Dd into D is denoted by p: Dd ~ D. Let g = ff~[N and take a 

nice neighborhood U C N of C 9. Choose c �9 C 9 and consider the union G C Uc 

of all good intervals T C Uc for Uc of positive time. As in the definition of Markov 

maps we get an induced map T: G -* Ur Observe that the range being induced 

to is the same, up to a nowhere dense set, as the domain on which inducing 

occurs .  

Since we started with an eventually expanding map f ,  the map g is also 

eventually expanding. Hence it has the Markov property. Now by applying 

Lemma 4.3 we get that 

I U o  - Cl = o, 
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i.e., T is a multiple covering map. 

Before applying the Multiple Covering Map principle, we need some definitions. 

Let BT be the collection of branches of T. For every I E BT there is a unique 

t l  _> 1 such that TII  = ft~ [I. The only thing left over is to count how many 

times the orbits of those branches of T use the branches of f .  Let I E BT and 

i E B and define tl(i) = # { j  <_ t l  - l i fJ(I)  C i}. 

Let p o r ( f )  = (Y l , . . . ,  Yb) E D. Then the Multiple Covering Map principle 

tells us 

E H "t~(~)=yi 1. 
IEBT iEB 

Now observe that the objects Ur T, B,  BT and tl(i) are all topologically defined. 

So if we define a real analytic function r D -~ R by 

r E Hxit'(i) 
IEBT iEB 

then r o p o ~r(f') = 1 for all f '  E [f]. So 

p o "n'([f]) C r  

The sequence 

~d -L ,D~  P , D  ~---~Rgl 

indicates how to prove Theorem C: we have to show that 1 is a regular value 

of r o p o r.  In particular we will show that the gradient of r has only positive 

entries. This will also imply the second statement of Theorem C. 

Proof  of  Theorem C: Take f E Ca and let F = p o r([f]) C D. Let W C D be 

the interior of the domain of convergence of r Then for x E W the gradient of 

r is defined and its components are given by 

or (z) t ,(j)  
: E tI(i)x~ ' ( ' ) - I H x j  > O, 

IEBT(i) jr 

where BT(i) = {I  E BTit l( i )  > 0}, i.e. consists of those branches whose 

orbits pass trough the branch i E B. Such branches exist because gi N is non- 

renormalizable: the g-orbit of Uc is dense in N, hence the f-orbit of Uc is dense 

in the minimal cycle. 

The fact that all components of the gradient of r are positive implies that 1 

is a regular value of r So r  W is an analytic codimension 1 submanifold 

of D. 
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CASE 1: F C W. Then F is part of the analytic codimension 1 submanifold 

~)-1(1) CI W, hence If] is contained in the analytic codimension 1 submanifold 

(r o p o ~r)-I(1). Furthermore, because r has a positive gradient, we will leave 

r and so F, by increasing some essential slopes. Theorem C is proved. 

CASE 2: F ~ W. In this case we will glue together a piece of the analytic 

manifold r N W with a piece of the boundary of W to obtain a continuous 

codimension 1 submanifold of D containing F. To do so we have to study the 

boundary of W. 

Let x = (xi) �9 D and consider the cubes 

Q~ = {(yl) �9 Dly ~ x and 0 _< y~ < xi} 

and 

Q+ -- ((y~) E Diy :~ x and yi >_ xi}. 

Because the coefficients of the series r are all non-negative we get the cube 

proper ty  

r < r < r 

for all y e Q~ and z �9 Q+. 

We will use polar coordinates on D. Let S be the set of all Euclidean unit 

vectors in D. Because F ~ W there is a 00 �9 S such that the ray (00} • (0, ~ )  

W. Using the cube property of r we conclude that all rays (0} x (0, oc) are 

not contained in W. Again, because the coefficients of the series r are all non- 

negative r is strictly increasing along rays. Now we can describe the boundary 

of W as the graph of a function b: S --* K The cube property of r implies 

easily that b is continuous (Lipschitz on compact sets of S). We conclude that 

the boundary of W is a continuous codimension 1 submanifold of D. 

Every ray contains at most one point of r because r is strictly increasing 

along rays. Let X = {0 �9 S[{0} x (0, c ~ ) n r  r 0}. Because the 

gradient of r has only positive entries we get that X C S is open and there 

exists an analytic function m: X ~ ~ such that the graph of m is the analytic 

manifold r n W. 

Now we glue those two graphs together to get a continuous codimension 1 

submanifold of D containing F. To do so observe that for a sequence xn E X 

tending to x �9 OX we have that (xn,m(x,~)) tends to the boundary of W. So 



146 R. GALEEVA, M. MARTENS AND C. TRESSER Isr. J. Math. 

the following function is continuous: 

f m(x) ,  i f x e X  
k(x) 

I b(x), i f x g Z  

and its graph in D is a continuous codimension 1 submanifold of D containing 

F. 

Let g be the map obtained by increasing an essential slope of f ,  say p ( r ( f ) )  = 

x E D and p(~r(g)) = y E D. Then y E Q; .  The cube property says that we 

leave r and hence the conjugacy class of f .  | (Theorem C) 

Markov maps can be used to define Markov extensions (the original map is 

a factor of the extension). Those extensions turned out to be very useful for 

studying the ergodic theoretical behavior, especially the existence of invariant 

measures. This is because extensions always have an absolutely continuous in- 

variant measure. Invariant measures for the original map could be constructed 

by trying to project the measure of the extension. 

The question whether every continuous measure can be obtained by projecting 

is not settled. Moreover, it is strongly related to the question whether case 2 in 

the proof of Theorem C actually occurs. Observe that the measure of the Markov 

extension of a map f can be projected if and only if the gradient of r is finite 

in the corresponding point in D. So showing that case 2 does not happen would 

also solve the projection question. Under certain combinatorial conditions it is 

possible to show the 

CONJECTURES: 

(1) Conjugacy classes are contained in analytic submanifolds, 

(2) The invariant measure of the Markov extension can be projected. 
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